skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Kechun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As a paradigmatic model of active fluids, bacterial suspensions show intriguing rheological responses drastically different from their counterpart colloidal suspensions. Although the flow of bulk bacterial suspensions has been extensively studied, the rheology of bacterial suspensions under confinement has not been experimentally explored. Here, using a microfluidic viscometer, we systematically measure the rheology of dilute Escherichia coli suspensions under different degrees of confinement. Our study reveals a strong confinement effect: the viscosity of bacterial suspensions decreases substantially when the confinement scale is comparable or smaller than the run length of bacteria. Moreover, we also investigate the microscopic dynamics of bacterial suspensions including velocity profiles, bacterial density distributions, and single bacterial dynamics in shear flows. These measurements allow us to construct a simple heuristic model based on the boundary layer of upstream swimming bacteria near confining walls, which qualitatively explains our experimental observations. Our study sheds light on the influence of the boundary layer of collective bacterial motions on the flow of confined bacterial suspensions. Our results provide a benchmark for testing different rheological models of active fluids and are useful for understanding the transport of microorganisms in confined geometries. 
    more » « less
  2. ABSTRACT Chromosomal integration of heterologous metabolic pathways is optimal for industrially relevant fermentation, as plasmid-based fermentation causes extra metabolic burden and genetic instabilities. In this work, chromosomal integration was adapted for the production of mevalonate, which can be readily converted into β-methyl-δ-valerolactone, a monomer for the production of mechanically tunable polyesters. The mevalonate pathway, driven by a constitutive promoter, was integrated into the chromosome of Escherichia coli to replace the native fermentation gene adhE or ldhA . The engineered strains (CMEV-1 and CMEV-2) did not require inducer or antibiotic and showed slightly higher maximal productivities (0.38 to ∼0.43 g/liter/h) and yields (67.8 to ∼71.4% of the maximum theoretical yield) than those of the plasmid-based fermentation. Since the glycolysis pathway is the first module for mevalonate synthesis, atpFH deletion was employed to improve the glycolytic rate and the production rate of mevalonate. Shake flask fermentation results showed that the deletion of atpFH in CMEV-1 resulted in a 2.1-fold increase in the maximum productivity. Furthermore, enhancement of the downstream pathway by integrating two copies of the mevalonate pathway genes into the chromosome further improved the mevalonate yield. Finally, our fed-batch fermentation showed that, with deletion of the atpFH and sucA genes and integration of two copies of the mevalonate pathway genes into the chromosome, the engineered strain CMEV-7 exhibited both high maximal productivity (∼1.01 g/liter/h) and high yield (86.1% of the maximum theoretical yield, 30 g/liter mevalonate from 61 g/liter glucose after 48 h in a shake flask). IMPORTANCE Metabolic engineering has succeeded in producing various chemicals. However, few of these chemicals are commercially competitive with the conventional petroleum-derived materials. In this work, chromosomal integration of the heterologous pathway and subsequent optimization strategies ensure stable and efficient (i.e., high-titer, high-yield, and high-productivity) production of mevalonate, which demonstrates the potential for scale-up fermentation. Among the optimization strategies, we demonstrated that enhancement of the glycolytic flux significantly improved the productivity. This result provides an example of how to tune the carbon flux for the optimal production of exogenous chemicals. 
    more » « less